An Algorithm for Isolating the Real Solutions of Semi-algebraic Systems
نویسندگان
چکیده
منابع مشابه
An Algorithm for Isolating the Real Solutions of Semi-algebraic Systems
a semi-algebraic system (sas for short), where n, s ≥ 1, r, t,m ≥ 0 and pi, gj , hk are all polynomials in x1, . . . , xs with integer coefficients. Furthermore, we always assume that {p1, . . . , pn} has only a finite number of common zeros. Many problems in both practice and theory can be reduced to problems of solving sas. For example, we may mention some special cases of the “p-3-p” problem...
متن کاملAn Algorithm for Isolating the Real Solutions of Piecewise Algebraic Curves
The piecewise algebraic curve, as the set of zeros of a bivariate spline function, is a generalization of the classical algebraic curve. In this paper, an algorithm is presented to compute the real solutions of two piecewise algebraic curves. It is primarily based on the Krawczyk-Moore iterative algorithm and good initial iterative interval searching algorithm. The proposed algorithm is relativ...
متن کاملReal Solution Classification for Parametric Semi-Algebraic Systems
Real solution classification of parametric polynomial systems is a crucial problem in real quantifier elimination which interests Volker Weispfenning and others. In this paper, we present a stepwise refinement algorithm for real solution classifications of a class of parametric systems consisting of polynomial equations, inequalities and inequations. For an input system, the algorithm outputs t...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Symbolic Computation
سال: 2002
ISSN: 0747-7171
DOI: 10.1006/jsco.2002.0572